Global-Scale Archival Goals

Durability

- Data is stored for centuries or longer.
Verifiability.

- Data is not subject to substitution attacks.
Availability.

— Data is accessible most of the time.
« Where most is defined in n 9's of availability.

Maintainability.
- System recovers from server and network failures.
— Efficiently incorporates new resources.
Atomicity.
- Updates are applied atomically.
Privacy.
— Information is only visible to those who have access rights.

Performance.
— Response time is bounded.

Archival Model

Archive Data Structures.
— Archive is a linearly ordered sequence of versions.
— Each version is a read-only sequence of bytes.

- E.g. an archive might be a file, a directory, or a database
record.

Naming.
— Globally-Unique IDentifier (GUID).

— Archives are uniquely specified by archive GUIDs (A-
GUIDs).

— Within an archive, each version is specified by a version
GUID (V-GUID).

e Versions are immutable and provide for time-travel.

Operations.

- Update Operations.
* Add versions to the end of the version sequence of a given archive.

- Read Operations.
 Read data from a specific version.

Serializer provides consistency.

— Entity in network that provides atomicity.
— Provides an A-GUID to V-GUID mapping.

— Creates a serial order over simultaneously submitted updates.

— Verifies that the client has update privileges.

— Atomically applies update to the archive and generates a new
V-GUID.

— Sends fragments from an update to storage servers.

Interface

e Generate new archive interface.
— create(name, identity, keys) => A-GUID.

Query Interface.

- query(A-GUID, Specifier) == V-GUID.
e Specifier => timestamp, version#, etc.

Read interface.

- read(V-GUID, offset, length) => data.

 Write interface.
— write(A-GUID, data) =>V-GUID.
— append(A-GUID,data) =>V-GUID.
- replace(V-GUID,offset,data,allowbr) => V-GUID or null.

» allowbr denotes whether operation allowed to generate branch.

4 2\

(Local Storage W

QRouti ng Layer J/

Storage

43 2

I

(Local Storage

Server
kLRoutl ng Layer)

fragments
Serializer -

S~
~
~
~
\\ 1
~
~
N I |
S - ‘
R .
\ —
\

(Local Storage W

“', KLRouti ng Layer)

i

(Local Storage W

QRouting Layer J

~

Update Mechanism
Encoder / Decoder
_Routing Layer)

— — —
— — —

-
~< -

&

||||IIII;;;: ;
- [\
j\‘llll““ ;

/ ‘
/
/

WL

-GUID

fragments

rite(A-GUID,...) (Local Storage W

- (Application QRouting Layer J/
. Decoder
(_Routing Layer J Client

v v
(Application

[
Decoder

. o kRouting Layer J

@)
O
(%
%9
-
w
=
o
ﬂ
(g"]

Long-Term Durability in OceanStore

Durability

9J01SUBIO

fl=an Tim= To Falure ol an Basr=coded Bock (iale = 1/4dj

f d s 110 - , : , , :
Case for Erasure Codes b b’ fagmenti - 64 ——
< numbe=i o ¥a e |G ——
o b e et
Background Assumptions Avallability a0 £
. l=4T0 E
e Erasure codes provide redundancy without e An archive is implemented on a collection of independently* Exploits the statistical stability of a large number § i
overhead of replication. failing disks. number of components (" 34 N - M E ol f
- Divide an object into m fragments. « Failed disks immediately replaced by new, blank ones. . Zm i no— i TEE
— Recode them into n fragments. : : : . =430
- e Each archival fragment for a given block is placed on a = N -
- A rate r = m/n code increases storage cost by a : : e
factor of /1 unique, randomly selected disk. ” W -
N Key property is that original object can be e A repair epoch_ » P, - :r:blabilitg tha; in objec: is available. | j
. . . » N -T1Total numper or Tragments.
reconstructed from any m fragments. - Time period between a global sweep, where a repair process scans » m - number of fragments needed for reconstruction. e MTTF Re=pai Tim= {monhiz)
- E.g. using an r =% code, divide a block into m = 16 the system, attempting to restore redundancy. » N - total number of machines in the world. . .
fraoments. and encode the original m fraaments into n » M - number of currently unavailable machines. - Grows exponentlally with number of
— ’ Y g fragments.
= 64 fragments. _ _ _ _
+ Increases storage cost by a factor four. e E.g. given 90% of a million machines availability: i f_m""s super-linearly with decreasing repair
imes.

e Example implementations

— Reed-Solomon Codes.
— Tornado Codes.
— Interleaved Reed-Solomon.

Efficient Repalr

Can this be Real?

e Local.
— Durability enhancement techniques such as RAID.
— Servers proactively copy data to new disk.
— Servers periodically verify the integrity of local data.

 Three requirements must be met:
— Failure Independence.
- Efficient Repalr.
— Data Integrity.

fragments.

e Distributed. e Verification Tree:

— EXxploit Tapestry’s distributed information and locality
properties.

Fallure Independence:
Effective Dissemination

 Global.
— Not as affective as distributed mechanisms.

e Model Builder.

- n =16 fragments,
- n = 32 fragments, rate r =%, yield 8 9's of availability.

e Erasure Codes require precise
Identification of failed/corrupted

- Use cryptographically secure hash algorithm to
detect corrupted fragments.

— n is the number of fragments.
— store log(n) + 1 hashes with each fragment. -
— Total of n.(log(n) + 1) hashes.]

e Top hash is a block GUID (B-GUID).
— Fragments and blocks are self-verifying.

rate r =%, yield 5 9's of availability. - E.g. MTTF = 103® years for a particular block.

e with n = 64 fragments, rate r =% and repair epoch e
= 6 months.

e MTTF = 35 years for replication with same storage
cost and repair epoch!

Data Integrity

e The OceanStore archive combines several techniques
to satisfty the goals of a global-scale archival
system.

— Erasure codes provide durability and availability.

Verification trees provide verifiability

Introspective failure analysis, automatic repair, and location
independent routing promote maintainability.

— The serializer provides atomicity.

- End-to-end encryption (not discussed in this poster)
provides privacy.

-GUID\

H14

— Takes input from various sources. H1 <N H34 e Result.
— Builds a model of failure correlation. v O - Archival storage that has the potential to store data
« Set Creator | | () (B (FD) indefinitely.
| Data Encoded Fragments

— Queries random nodes for properties.

— Uses the model to compute Dissemination Sets.

Fragment 1:(H2) (H34) (_Hd) (__ F1- fragment data)

e Mechanisms are implemented in current prototype.

— First prototype, code name Puddle.

e Sets of storage servers that fail with low correlation.

Fragment 2 H1) (H34) (Hd) (F2 - fragment data)

e Implemented archival model, NFS front-end using archival interface,

e Disseminator.

Fragment 3 H4) (H12) (Hd) (_ F3- fragment data)

and ran Andrew Benchmark with 400 client, serializers, and storage

servers in network.

- Sends one fragment to each storage server in a set.

Fragment 4{_H3) (H12) (_Hd) (__F4- fragment data)

(HY

Data

deia — Second prototype, code name Pond.

Ingy, :
%‘M odel Builder Ringof L1
Humen Inpu Heartbeats

 Implemented on top of a Staged Event Driven Architecture.
* Implementing Dissemination and repair algorithms.

>:,I % \‘:
Q¥ AR
&@N) \O{\(Q T~ _--~
R \%“ Set Creator
probe %’

\\\\\

- -~

e Tapestry is a location-independent routing
Infrastructure.
- Fragments and serializers are both named by opaque bit-
strings (GUIDs).
— Tapestry can perform location-independent routing of
messages directly to objects using only GUIDs.

— Tapestry is an 1P overlay network that uses a distributed,
fault-tolerant architecture to track the location of every
object in the network.

— Tapestry has two components: a routing mesh and a
distributed directory service.
e Routing in Tapestry.
— Nodes are connected to other nodes via neighbor links.

— Any node can route to any other by resolving one digit at a
time:
« e.g. 1010 => 2218 => 9098 => 7598 => 4598
— Each GUID is associated with one particular Root node.

~~ -

fragments

Fragment-1

fragments

\
\ \
\ |
1]
| [
I 1
[} !
/ /
/ /
/ /
/ /
/
/ g
/ /
/ /
/ /
¢ / S
/
,’ / / / /7
/ / ’
/ s
/
/
/ ’
’
1 == / P

[. et S =
\ I 7 -
| = // -
] ’ ’ / -
[} = 13 4 &
=1 = / -
// //
’ P
d rd
7 e

' '\ Fragment-2

Enabling Technology: Tapestry

Tapestry Operations

e Publish.

- send a message toward the root.
— leaving back-pointers at each hop.

7 - E.gnode 4432 stores a fragment
with GUID name 4598.

e Publish steps: 4432 => B4F8 => 9098 =>
7598 => 4598

L1

- Look-up.
/ (o128) (F - Clients and serializers locate
< s/

fragments by sending a message
toward a root.

until they encounter enough pointers.

E.g. Client 0325 can locate two
fragments after only two hops: 0325
=> B4F8 => 9098.

-

L4 —

S~< -

~— -

